
N8 8- 1726 1

SOFTWARE FOR
INTEGRATED MANUFACTURING SYSTEMS

Part I

A. W. Naylor and R. A. Volz
The Robotics Research Laboratory

The University of Michigan

Abstract

For several years the University of Michigan has been develop-
ing a broad, unified approach to programming manufacturing
cells, factory floors, and other manufacturing systems. It is
based on a blending of distributed Ada, software components,
generics and formal models. Among other things the machines
and devices which make up the components, and the entire
manufacturing cell-machines, devices, software-is viewed
as an assembly of software components. The purpose of this
project is to reduce the cost, increase the reliability and in-
crease the flexibility of manufacturing software.

This paper gives an overview of the approach and describes
an experimental generic factory floor controller that has been
developed using the approach. The controller is “generic” in
the sense that it can control any one of a large class of factory
floors maing an almost arbitrary mix of parts.

1 Introduction

The basic difficulties with current software for integrated man-
ufacturing system is that it is too expensive, too inflexible, and
needs greater reliability. For the past five years the University
of Michigan has been developing an approach to this software
which attempts to address these difficulties. This paper re-
views this approach and then discusses an experiment which
uses the approach.

2 The Approach

The approach is based on five assumptions or beliefs.

1. Manufacturing software should be in the mainstream of
modem software.
It is unrealistic to expect to solve the problems of man-
ufacturing software if we try to develop solutions that
are peculiar to manufacturing. Manufacturing software
is-after all-software and most of its problems are

problems shared by software in general. Manufactur-
ing software must take advantage of the tools and tech-
niques being developed by modem software engineer-
ing. For example, manufacturing software should be
written in modem general purpose languages and not
tailored “manufacturing languages.”

2. Software should be created as an assemblage of software
components.
In other words, we should use object oriented program-
ming. For example, the programmer should be able
to view a robot, vehicle, material handling system, or
a factory floor as a software component. The program-
ming should be concerned with two things: the interface
to the component and how the component works, that
is, its semantics. Further, there should be orderly ways
to assemble components to create new, larger compo-
nents, example, create a cell component from machine
and robot components.
The advantages are that (a) components can be reused
and replaced thereby decreasing cost and increasing flex-
ibility. Further, the object-oriented approach will in-
crease software reliability.

3. This should be done in a largely common-eventually
distributed-language environment.
The use of object-oriented programming really requires
a common language environment. However, this does
not mean that portions of a large software system can-
not be written in other languages. For example, NC ma-
chines will undoubledly be programmed using parts pro-
gramming languages. These will be encapsulated into
software components which externally present a public
interface in the common language environment.

Since manufacturing systems can involve hundreds or
even thousands of programmable devices and these will
be able to communicate with one another, we are in-
evitable faced with distributed systems. Rather than
writing many separate programs which commirnicate
with one another, we believe the entire system should
be written as one (of course, highly structured) program

397

in a distributed language. The advantages are that (!
it relieves the programmer of writing communicamr.
software, (2) allows the programmer to think about the
program at a level which largely suppresses the proces-
sor boundaries, and (3) allow the language translation
system to check for bugs across the entire software sys-
tem.

4. Explicit formal semantic models are required.

Much of manufacturing software is concerned with real-
time control of manufacturing systems, and real-time
control inevitably requires a model for the controlled
system. For example, the control software for a factory
floor requires an understanding of how the factory floor
works, that is, an understanding of its semantics. Thus,
in addition to using software components, we must also
be able to model their semantics.

5. Generics will amplify software reusability.

By “generics” we mean skeletons for software compo-
nents which can be instantiated as actual components.
The instantiation process requires that information be
supplied which allows the skeleton to be fleshed-out into
an actual component. for example, one can imagine a
generic material handling system which requires infor-
mation describing the vehicles and the path layout. This
would allow the same software to be used with different
fleets of vehicles and different path layouts.

6. The experiment.

We have developed a generic factory floor controller. It
expects to be given a model of the factory floor, pro-
cess plans, and orders. Based on this information, the
generic factory floor controllers determines the appro-
priate sequence of commands to the factory floor. This
is done in real-time. The basic control algorithm is a
search algorithm which explores possible future scenar-
ios and selects the best next step, and then carries out
the cycle again.

398

